<< < "no abe acc act aff ama ani ant aps ast atm aut bar bic Boh bou cal car cel che cla col com com Com con con con con con con con con con con con con Cor cor cot cul de- dec dem des dif dil dir dis dom dyn Edd ele ele emi equ Eve exc exp fac fin for fre fuz gen Glo gra gra Ham hel hor hyd ign inc inf Inf int Int int ion irr jum Lag lea lig lin Lor Lyo mag mat met min Mon moo NaC neg New New non non non nul obs one opt Ori oxi par per per phl pho pla Pla pol pos pre pro pro pse qua rad rad rea rec reg rel res ret rot Ryd sci sec sec seq sim Sod sor spe sta ste sto sub sup syn the Tho Tor tra tru und vec vio wav Wil zir > >>
scintillation susu (#) Fr.: scintillation 1) Rapid variation in the brightness, wavelength, and mean position of stars
caused by turbulence in the Earth's atmosphere. From L. scintillationem (nominative scintillatio), from scintillatus p.p. of scintillare "to send out sparks, to flash," from scintilla "particle of fire, spark." Susu, from su "light," related to suz "burning," present stem of suxtan; Mid.Pers. sôxtan, sôzidan "to burn," Av. base saoc- "to burn, inflame" sūcā- "brilliance," upa.suxta- "inflamed;" cf. Skt. śoc- "to light, glow, burn," śocati "burns," śoka- "light, flame;" PIE base *(s)keuk- "to shine." |
scintillation counter susu šomâr Fr.: compteur à scintillation A device for detecting and measuring ionizing radiation by means of flashes produced when the radiation particles strike a sensitive layer of phosphor. → scintillation; → counter. |
scleronomous saxtdâtik Fr.: scléronome Relating to a constraint or system that does not contain time explicitly. For example, a pendulum with an inextensible string of length l0 is described by the equation: x2 + y2 = l02 is both → holonomic and scleronomous. From Gk. sclero-, from skleros "hard" + -nomous, → -nomy. |
Scorpius-Centaurus association âhazeš-e Každom-Kentawros Fr.: association Scorpius-Centaurus The nearest → OB association to the Sun. It contains several hundred stars, mostly → B stars which concentrate in the three subgroups: Upper Scorpius, Upper Centaurus Lupus, and Lower Centaurus Crux. Upper Scorpius is the youngest subgroup, Upper Centaurus Lupus the oldest subgroup of the association. Isochrone fitting to the Hertzsprung-Russell diagram indicates that the star formation occurred some 5-20 Myr ago. Based on data from the → Hipparcos catalog, it turns out that the Sco-Cen association lies at a distance of 118-145 → parsecs, with the exact value depending on the subgroup of the association. The Sco-Cen association is probably a member of the → Gould Belt (Preibisch & Mamajek, 2008, astro-ph/0809.0407). → Scorpius; → Centaurus; → association. |
scotopic vision did-e târiki Fr.: vision scotopique Vision that occurs when the eye is dark-adapted. In scotopic vision, the level of luminance is so low that the retinal cones are not stimulated, and there is no color vision. Same as scotopia; → dark adaptation. Scotopic, from L. Gk. skoto- combining form of skotos "darkness" + -opia akin to ope "view, look," ops "eye, face;" → vision. Did, → vision; târiki noun from târik "dark," Mid.Pers. târig "dark," târ "darkness," Av. taθra- "darkness," taθrya- "dark," cf. Skt. támisrâ- "darkness, dark night," L. tenebrae "darkness," Hittite taš(u)uant- "blind," O.H.G. demar "twilight." |
screen font rixtâr-e pardé Fr.: fonte d'écran A character used for on-screen → display. See also → printer font. |
screened Coulomb interaction andaržireš-e bâparde-ye Coulomb Fr.: interaction de Coulomb écrantée The → Coulomb interaction reduced owing to the presence of other electrons. See → shielding effect. → screen; → coulomb; → interaction. |
sea horizon ofoq-e daryâ Fr.: horizon de mer The → apparent horizon formed by the sea. |
season fasl (#) Fr.: saison One of the four periods of the year astronomically defined by the position of the Sun with respect to the equator. As a result of the obliquity of the ecliptic, the angular distance between the Sun and the equator varies in the course of the year. This circumstance gives rise to seasons. The current lengths of the astronomical seasons, around the year 2000, are about: spring 92.76 days, summer 93.65 days, autumn 89.84 days, and winter 88.99 days. The seasons are unequal because the Earth's orbit is slightly elliptical and the Sun is not exactly at the center of the orbit. Moreover, the Earth moves faster when it is close to the Sun than when it is farther away, so the seasons that occur when the Earth is close to the Sun pass more quickly. M.E. sesoun, seson, from O.Fr. seison "a sowing, planting," from L. sationem (nominative satio) "a sowing," from p.p. stem of serere "to scatter seed over land." Fasl, from Ar. faSl "cutting, dividing; section." |
Secchi classification radebandi-ye Secchi Fr.: classification de Secchi A pioneering work in → spectral classification conducted in the 1860s. Secchi divided stars into four main groups based on the visual observation of spectra. Class I: The white and bluish stars with a continuous spectrum crossed by hydrogen bands, the metallic bands being absent or weak. Examples, → Sirius, → Vega. Class II: Yellow stars, with spectra in which the hydrogen bands were less prominent and the metallic lines more strong. Examples, Sun, → Capella. Class III: Red or orange stars, showing bands or flutings. Examples, → Antares, → Betelgeuse. Class IV: Red stars, showing bands similar to Class III, but with the sharp edge of the flutings toward the other end of the spectrum. Secchi's scheme was superseded by the photographic → Harvard classification system. Pietro Angelo Secchi (1818-1878), Italian astronomer and Jesuit priest; → classification. |
second 1) dovom (#), dovomin (#); 2) sâniyé (#) Fr.: seconde 1) Next after the first in place, time, or value. M.E., from O.Fr. second, from L. secundus "following, next in order," from root of sequi "to follow;" PIE base *sekw- "to follow;" cf. Pers. az from; Mid.Pers. hac "from;" Av. hac-, hax- "to follow," hacaiti "follows" (O.Pers. hacā "from;" Av. hacā "from, out of;" Skt. sácā "with"); Skt. sácate "accompanies, follows;" Gk. hepesthai "to follow;" Lith. seku "to follow." 1) Dovom, dovomin "ordinal number of do,
two" (Mid.Pers. do; Av. dva-; cf.
Skt. dvi-; Gk. duo; L. duo; (Fr. deux; E. two;
Ger. zwei). |
second approximation nazdineš-e dovom Fr.: deuxième approximation Math: In calculus, limiting an equation to its → second derivative, for example: ex≅ 1 + x + x2/2. Also called linear approximation. → first approximation. → second; → approximation. |
second collapse rombeš-e dovom Fr.: deuxième effondrement An early evolutionary period in the process of star formation which succeeds the → first collapse. When the mass of the → first core has increased by about a factor 2 and the radius has decreased by a similar factor, the central temperature of the core reaches about 2000 K. At this point the → molecular hydrogen begins to dissociate into atoms. This reduces the → adiabatic index (γ) below the critical value 4/3, with the result that the material at the center of the core becomes unstable and begins to collapse. Most of the gravitational energy generated by this collapse goes into the → dissociation of H2 molecules, so that the temperature rises only slowly with increasing density. In this second collapse phase, as in the first, the density distribution in the collapsing region becomes more and more sharply peaked at center, and the time scale becomes shorter and shorter with increasing central density. The central collapse of the core continues until the hydrogen molecules are nearly all dissociated and γ again rises above 4/3. The central pressure then rises rapidly and once again becomes sufficient to decelerate and stop the collapse at the center. A small core in the → hydrostatic equilibrium then arises, bounded by a shock front in which the surrounding infalling material is suddenly stopped. The initial mass and radius of the second core are about 3 x 1030 g (1.5 x 10-3Msun) and 9 x 1010 cm (1.3 Rsun) respectively, and the central density and temperature are about 2 x 10-2 g cm-3 and 2 x 104 K, respectively. The second core will evolve into a → young stellar object (R. B. Larson, 1969, MNRAS 145, 271). |
second contact parmâs-e dovom Fr.: deuxième contact The beginning of the total phase of a solar eclipse when the leading edge of the Moon touches the eastern edge of the Sun completely obscuring the Sun. |
second core maqze-ye dovom Fr.: deuxième cœur A hydrostatic object predicted to result from the → second collapse of a → molecular cloud in an early stage of star formation. |
second derivative vâxane-ye dovom Fr.: dérivée seconde In → calculus, the → derivative of a → first derivative. It is usually written as f''(x), d2y/d2x, or y''. → second; → derivative. |
second derivative test âzmun-e vâxane-ye dovom Fr.: test de la dérivée seconde A method, used in → calculus, for determining whether a given → stationary point of a → function is a → local minimum or → local maximum. → second; → derivative; → test. |
second dredge-up borunkašid-e dovom Fr.: deuxième dragage A → dredge-up process that occurs after core helium burning, in which the convective envelope penetrates much more deeply, pushing hydrogen burning shell into close proximity with the helium burning shell (→ first dredge-up). This arrangement is unstable and leads to burning pulses. The reason is that the hydrogen shell burns out until there is enough helium for the helium combustion to occur and all the helium is rapidly burnt. Afterward the hydrogen shell again burns outward and the process repeats. |
second generation star setâre-ye âzâneš-e dovom Fr.: étoile de deuxième génération A star whose formation is induced by an older star itself formed previously in the same region. See also → stimulated star formation, → sequential star formation, → triggered star formation. → second; → generation; → star. |
second law of black-hole mechanics qânun-e dovom-e mekânik-e siyah-câl Fr.: deuxième loi de la mécanique des trous noirs The surface area of a black hole's horizon can never decrease. → second; → law; → black hole; → mechanics. |
<< < "no abe acc act aff ama ani ant aps ast atm aut bar bic Boh bou cal car cel che cla col com com Com con con con con con con con con con con con con Cor cor cot cul de- dec dem des dif dil dir dis dom dyn Edd ele ele emi equ Eve exc exp fac fin for fre fuz gen Glo gra gra Ham hel hor hyd ign inc inf Inf int Int int ion irr jum Lag lea lig lin Lor Lyo mag mat met min Mon moo NaC neg New New non non non nul obs one opt Ori oxi par per per phl pho pla Pla pol pos pre pro pro pse qua rad rad rea rec reg rel res ret rot Ryd sci sec sec seq sim Sod sor spe sta ste sto sub sup syn the Tho Tor tra tru und vec vio wav Wil zir > >>